1. A cylindrical container contains water upto a height $\mathrm{h}=40 \mathrm{~cm}$ enclosed by a light piston on top. A block of mass 24 kg is kept on the piston. Area of cross section of cylinder is $0.4 \mathrm{~m}^{2}$. Find the speed at which water ejects from a small hole at bottom of cylinder at the green instant

Ans. 3.00
Sol. Applying Bernoulli's equation at A and B.

$P_{\text {atm }}+\frac{m g}{A}+\rho g h+\frac{1}{2} \rho V^{2}=P_{a t m}+\frac{1}{2} \rho v^{2}$
$\mathrm{V} \rightarrow 0$
$\frac{\mathrm{mg}}{\mathrm{A}}+\rho \mathrm{gh}=\frac{1}{2} \rho v^{2}$

$$
\frac{24 \times 10}{0.4}+1000 \times 10 \times 0.4=\frac{100}{2} \mathrm{v}^{2}
$$

$$
\mathrm{v} \simeq 3 \mathrm{~m} / \mathrm{s} .
$$

2. A rod of mass m and length L is bent in semicircle then it's moment of inertia about an axis passing through the centre of semicircle \& perpendicular to it's plane is:
(1) $\frac{\mathrm{mL}^{2}}{2 \pi^{2}}$
(2) $\frac{\mathrm{mL}^{2}}{\pi^{2}}$
(3) $\frac{2 m L^{2}}{\pi^{2}}$
(4) $\frac{\mathrm{mL}^{2}}{4 \pi^{2}}$

Ans. (2)
Sol. $\mathrm{L}=\pi \mathrm{R}, \mathrm{R}=\frac{\mathrm{L}}{\pi}$
Moment of inertia $=\mathrm{mR}^{2}=\frac{\mathrm{mL}^{2}}{\pi^{2}}$
3. A solid cylinder of mass m and radius R is at rest on rough incline plane with $\mu_{\mathrm{s}}=0.4$ as shown in figure. If string is ideal, then friction force acting on solid cylinder is:

(1) $\sqrt{3} \frac{\mathrm{mg}}{4}$
(2) $\frac{\mathrm{mg}}{5}$
(3) $\frac{\mathrm{mg}}{2}$
(4) $\frac{\mathrm{mg}}{4}$

Ans. (1)

Sol.

$T_{A}=0$, so $m g \sin \theta \times R=f \times 2 R$
$\mathrm{f}=\frac{\mathrm{mg} \sin \theta}{2}$
$\mathrm{f}=\sqrt{3} \frac{\mathrm{mg}}{4}$
4. (A) Electric monopoles doesn't exist whereas magnetic monopoles exist.
(B) Magnetic lines of solenoid at its ends and outside are not perfectly straight.
(C) Magnetic field lines of toroid are confined in it.
(D) Magnetic lines are not parallel inside bar magnet.
(E) Perfect Diamagnetic $\Rightarrow \chi=-1$

Which of the following statements are correct.
(1) A, B
(2) A,C,E
(3) B,C,E
(4) B only

Ans. (3)
Sol. Theoretical.
5. A ball collides with another ball at rest elastically. Just after collision their velocity is equal in magnitude but opposite in direction find out ratio of their masses:
(1) $\frac{1}{3}$
(2) 2
(3) $\frac{1}{2}$
(4) 1

Ans. (1)

Sol. Using linear momentum conservation
$\mathrm{P}_{\mathrm{i}}=\mathrm{m}_{1} \mathrm{u}+\mathrm{m}_{2}(0)=\mathrm{P}_{\mathrm{f}}=\mathrm{m}_{1} \mathrm{v}-\mathrm{m}_{2} \mathrm{v}$
$\mathrm{m}_{1} \mathbf{u}=\left(-\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}$
$\mathrm{e}=1=\frac{2 \mathrm{v}}{\mathrm{u}}=1$
$\mathrm{u}=2 \mathrm{v}$
$\mathrm{m}_{1} \times 2 \mathrm{v}=\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) \mathrm{v}$
$2 \mathrm{~m}_{1}=\mathrm{m}_{2}-\mathrm{m}_{1}$
$3 \mathrm{~m}_{1}=\mathrm{m}_{2}$
$\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{1}{3}$
6. Kinetic energy of a proton and α particle is k_{p} and k_{α} respectively. Both are projected in same uniform magnetic field perpendicular to it if the ratio of radius of circular path is $\frac{2}{1}$ then find $\frac{\mathrm{k}_{\mathrm{p}}}{\mathrm{k}_{\alpha}}$:
(1) 4
(2) 2
(3) $\frac{1}{2}$
(4) $\frac{1}{\sqrt{2}}$

Ans. (1)
Sol. $\quad \mathrm{R}=\frac{\sqrt{2 \mathrm{mK.E}}}{\mathrm{qB}}$
$\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{R}_{\alpha}}=2=\sqrt{\frac{\mathrm{m}^{\times} \times \mathrm{k}_{\mathrm{p}}}{\mathrm{q}^{2}}} \times \sqrt{\frac{4 \mathrm{q}^{2}}{4 \mathrm{mk}_{\alpha}}} \Rightarrow \frac{\mathrm{k}_{\mathrm{p}}}{\mathrm{k}_{\alpha}}=4$
7. In an adiabatic process the fraction change in pressure is equal to : (adiabatic coefficient is γ)
(1) $-\frac{\gamma d v}{v}$
(2) $\frac{\gamma d v}{v}$
(3) $\frac{1}{\gamma} \frac{\mathrm{dv}}{\mathrm{v}}$
(4) $-\frac{1}{\gamma} \frac{\mathrm{dv}}{\mathrm{v}}$

Ans. (1)
Sol. $\quad \mathrm{PV}^{\gamma}=$ constant
$\ell \mathrm{nP}+\gamma \ell \mathrm{nV}=$ constant
$\frac{\mathrm{dP}}{\mathrm{P}}+\gamma \frac{\mathrm{dv}}{\mathrm{v}}=0 \quad ; \quad \frac{\mathrm{dP}}{\mathrm{P}}=-\gamma \frac{\mathrm{dv}}{\mathrm{v}}$
8. A block of mass 4 kg is moving with velocity $10 \mathrm{~m} / \mathrm{s}$ collides with a spring of natural length 8 m and spring constant $100 \mathrm{~N} / \mathrm{m}$. When it transfer all of its energy to spring then length (in m) of spring after compression is:
Ans. 2.00

Sol. $\quad \frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{kx}^{2}$
$\frac{1}{2} 4 \times 10^{2}=\frac{1}{2} \times 100 \mathrm{x}^{2}$
$\mathrm{x}=2 \mathrm{~m}$.
9. Which of the following represents SHM of time period π / ω.
(1) $\sin (\omega \mathrm{t})+\cos (\omega \mathrm{t})$
(2) $\sin ^{2}(\omega t)$
(3) $\cos \left(\frac{3 \pi}{4}-2 \omega t\right)$
(4) $\cos \omega t+\cos 2 \omega t+\cos 3 \omega t$

Ans. (3)
Sol. 2 and 3 option represent SHM of time period π / ω as angular frequency is 2ω.
If the above equations represent displacement from mean position then only 3 is correct but if they represent position then 2 and 3 both will be correct.
10. Proton can decay into neutron
(1) not possible since mass of proton is less than neutron
(2) possible only in nucleus
(3) always possible because decay is always with β^{+}particle
(4) not possible because decay is always with β^{+}particle

Ans. (2)
Sol. Theory (k-Capture)
11. A measurement is (7.5 ± 0.85), then percentage error is

Ans. 11
Sol. $\quad \%$ error $=\frac{0.85}{7.5} \times 100=11.33$
12. An electromagnetic wave is travelling along y-axis. Which of the following can be it's electric field \& magnetic field.
(1) E_{x}, B_{y} or B_{x}, E_{z}
(2) E_{y}, B_{x} or B_{y}, E_{x}
(3) E_{x}, B_{z} or E_{z}, B_{x}
(4) B_{y}, E_{z} or E_{y}, B_{z}

Ans. (3)
Sol. $\hat{E} \times \hat{B}=\hat{C}$
i.e $\hat{E} \times \hat{B}$ points in the direction of propagation of $E M$ wave.
13. In a series RLC circuit, capacitive reactance is 4Ω, inductive reactance is $10 \Omega \&$ resistance is 6Ω then power factor of circuit is:
(1) $\frac{1}{\sqrt{3}}$
(2) $\frac{1}{\sqrt{2}}$
(3) $\frac{1}{2}$
(4) 1

Ans. (2)
Sol. power factor
$\operatorname{Cos} \phi=\frac{R}{z}$

$$
\begin{aligned}
& =\frac{R}{\sqrt{R^{2}+\left(x_{L}-x_{C}\right)^{2}}} \\
& =\frac{6}{\sqrt{6^{2}+(10-4)^{2}}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

14. All charges of same magnitude $(1 \mu \mathrm{C})$ are placed on $1,2,4,8,16$, ∞. Net force on charge 1C placed on origin is $x \times 10^{3} \mathrm{~N}$ then find the value of x .

Ans. $\quad 12.00$
Sol. $\mathrm{F}=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}_{1}^{2}}+\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}_{2}^{2}}+\frac{\mathrm{kq}_{1} \mathrm{q}_{2}^{\prime \prime}}{\mathrm{r}_{3}^{2}}+\ldots \ldots$.
$=9 \times 10^{9} \times 10^{-6}\left[1+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2^{2}}\right)^{2}+\left(\frac{1}{2^{3}}\right)^{2}+\ldots .\left(\frac{1}{2^{\infty}}\right)^{2}\right]$
$=9 \times 10^{9} \times 10^{-6}\left[\frac{1}{1-\frac{1}{4}}\right]$
$=9 \times 10^{3} \times \frac{4}{3}$
$=12 \times 10^{3} \mathrm{~N}$
15. A particle is moving in circular track. Its potential energy is $U=-\frac{k}{r}$. Choose correct option for $\mathrm{r}-\mathrm{v}$ graph.
(1)

(2)

(3)

(4)

Ans. (1)
Sol. $U=-\frac{k}{r}$
$F=-\frac{d u}{d r}=\frac{k}{r^{2}}$
$\frac{1}{2} m v^{2}=\frac{k}{r^{2}}$
$v=\sqrt{\frac{2 k}{m}} \times \frac{1}{r}$
$y=\frac{C}{X}$
$x y=C$
16. A planet is revolving around sun with angular momentum L and mass m. Then the areal velocity will be:
(1) $\frac{L}{m}$
(2) $\frac{L}{4 m}$
(3) $\frac{L}{2 m}$
(4) $\frac{2 \mathrm{~L}}{\mathrm{~m}}$

Ans. (3)
Sol. Theoretical.
17. A particle of mass 5 gm is projected at an angle 45°. Then the magnitude of change in momentum between starting and end points is $x \times 10^{-2} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. Then the value of x . $\left[\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right]$

Ans. 5.00
Sol. $\quad \vec{P}_{i}=m\left(5 \sqrt{2} \cos 45 \varrho \hat{i}+5 \sqrt{2} \sin 45^{\circ} \hat{j}\right)$
$\vec{P}_{f}=m\left(5 \sqrt{2} \cos 45^{o} \hat{i}-5 \sqrt{2} \sin 45^{\circ} \hat{j}\right)$
$\Delta \vec{P}=\vec{P}_{f}-\vec{P}_{i}=-2 m \times 5 \sqrt{2} \times \frac{1}{\sqrt{2}} \hat{j}$
$=-10 \times 5 \times 10^{-3} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

$$
|\stackrel{\rightharpoonup}{\Delta \mathrm{P}}|=5 \times 10^{-2} \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

18. Find out time for LR current growth circuit at which energy stored in inductor is 25% of steady-state.
(1) $\frac{L}{R} \ell n 2$
(2) $\frac{R}{L} \ell n 2$
(3) $\frac{R}{L} \ell n 4$
(4) $\frac{L}{R} \ell n 3$

Ans. (1)
Sol. $\mathrm{U}=\frac{1}{2} \mathrm{LI}^{2}$
$\frac{1}{2} \operatorname{LI}^{2}=\frac{1}{4} \operatorname{LI}_{0}{ }^{2}$
$\mathrm{I}=\frac{\mathrm{I}_{0}}{2}=\mathrm{I}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)$
$\mathrm{t}=\mathrm{I} \ell \mathrm{n} 2=\frac{\mathrm{L}}{\mathrm{R}} \ell \mathrm{n} 2$
19. Three rays red, green and blue with refractive index $\mu_{\mathrm{R}}=1.23, \mu_{\mathrm{G}}=1.42 \mu_{\mathrm{B}}=1.47$ respectively. All rays incident on right angle prism as shown in figure, then which option is correct :

(1) Only red ray emerges from the prism
(2) red and green both emerges from the prism
(3) all rays emerges from the prism
(4) green and blue ray emerges from the prism

Ans. (1)
Sol. For T.IR
$\mathrm{i}=450$
$\mathrm{i}>\mathrm{C} \quad \mathrm{n}>\sqrt{2}$
$45^{\circ}>\mathrm{C}$
$\mathrm{n}>1.414$
$\frac{1}{\sqrt{2}}>\frac{1}{n}$
So only red ray will come out.
20. Velocity v / s displacement graph of a particle is shown in figure.

Correct a-x graph will be
(1)

(2)

(3)

(4)

Ans. (1)
\square

Sol. $\frac{v}{v_{0}}+\frac{x}{x_{0}}=1$
$\frac{\mathrm{a}}{\mathrm{v}_{0}}=-\frac{\mathrm{v}_{0}}{\mathrm{x}_{0}} \mathrm{v}$
$\frac{a}{v_{0}}=-\frac{v_{0}^{2}}{x_{0}}\left(1-\frac{x}{x_{0}}\right)$
$a=-\frac{v_{0}^{3}}{x_{0}}\left(1-\frac{x}{x_{0}}\right)$

21. One antenna is placed at height 20 m . Now it is placed 5 m above the ground level. Change in range in later case is $\mathrm{n} \%$ with respect to case 1 . Find n .
Ans. 100.00
Sol. $\quad \%$ change $=\left(\frac{\sqrt{2 \times 20 \mathrm{R}}-\sqrt{2 \times 5 \mathrm{R}}}{\sqrt{2 \times 5 \mathrm{R}}}\right) \times 100$

$$
\begin{aligned}
& =100 \% \\
& n=100
\end{aligned}
$$

22. The correct reaction between α and β is :
(1) $\alpha=\frac{\beta}{\beta+1}$
(2) $\beta=\frac{\alpha}{\alpha+1}$
(3) $\beta=\frac{\alpha}{\alpha-1}$
(4) $\alpha=\frac{\beta}{\beta-1}$

Ans. (1)
Sol. $\alpha=\frac{I_{C}}{I_{E}}, \beta=\frac{I_{C}}{I_{B}}$
$\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}$
$\frac{\mathrm{I}_{\mathrm{E}}}{\mathrm{I}_{\mathrm{C}}}=\frac{\mathrm{I}_{\mathrm{B}}}{\mathrm{I}_{\mathrm{C}}}+1$
$\frac{1}{\alpha}=\frac{1}{\beta}+1$
$\alpha=\frac{\beta}{1+\beta}$
23. Total length of wire is 72 cm then find x (in cm) for zero deflection in galvanometer.

Ans. 48.00
Sol. $\frac{12}{\mathrm{x}}=\frac{6}{(72-\mathrm{x})}$

$$
12 \times 72-12 x=6 x
$$

$\mathrm{x}=\frac{12 \times 72}{18}$
$\mathrm{x}=48 \mathrm{~cm}$
24. If we use proton instead of electron in an electron microscope. Then its resolving power will change by a factor of $\left(\mathrm{m}_{\mathrm{p}}=1837 \mathrm{~m}_{\mathrm{e}}\right)$
(1) $\frac{1}{1837}$
(2) 1837
(3) $\sqrt{1837}$
(4) does not change

Ans. (3)
Sol. $\mathrm{RP} \propto \frac{1}{\lambda}$
$\lambda \propto \frac{1}{\sqrt{m}}$
25. The ratio of rms speed and average speed of an ideal gas at 300 k temperature is:
(1) $\sqrt{\frac{3 \pi}{8}}$
(2) $\sqrt{\frac{8 \pi}{3}}$
(3) $\sqrt{\frac{3}{8 \pi}}$
(4) $\sqrt{\frac{8}{3 \pi}}$

Ans. (1)
Sol. $\quad V_{R M S}=\sqrt{\frac{3 R T}{M}}$
$\& \quad \mathrm{~V}_{\text {avg }}=\sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}}}$
$\therefore \frac{\mathrm{V}_{\mathrm{RMS}}}{\mathrm{V}_{\mathrm{avg}}}=\sqrt{\frac{3 \pi}{8}}$
26. Find duration of a day for a person at equator experiencing weightlessness condition.
$\left[\mathrm{R}_{\mathrm{e}}=6400 \mathrm{~km}\right]$
(1) 1600 min
(2) 84 min
(3) No change
(4) 120 min

Ans. (2)
Sol. effective gravity at
equator $g_{\text {eff }}=\left(g-R_{e} \omega^{2}\right)=0$
$\omega=\sqrt{\frac{g}{R_{e}}}$
so time period
$\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{R}_{\mathrm{e}}}{\mathrm{g}}}=84.6 \mathrm{~min}$
≈ 84
27. Two identical gases are enclosed in a chamber separated by a piston. If their entropies are S_{1} and S_{2} respectively then find entropy of the system after piston is removed

(1) $S_{1}-S_{2}$
(2) $\mathrm{S}_{1} \mathrm{~S}_{2}$
(3) $\mathrm{S}_{1}+\mathrm{S}_{2}$
(4) $\frac{S_{1}}{S_{2}}$

Ans. (3)
Sol. $\quad S_{1}=\frac{f}{2} n_{1} R \quad S_{2}=\frac{f}{2} n_{2} R$
$\mathrm{S}=\frac{\mathrm{f}}{2}\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right) \mathrm{R} \quad \Rightarrow \quad \mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}$
28. Coming soon.
29. Coming soon.
30. Coming soon.

