HHP/HPH COVID-19 Community Webinar Series

Monday, September 21, 2020 5:30pm – 6:30pm

HAWAI'I PACIFIC HEALTH

HAWAI'I HEALTH PARTNERS

Moderator - 09/21/20

Andy Lee, MD

Medical Director, *Hawai'i Health Partners* Chief of Staff, *Pali Momi Medical Center* Hawai'i Pacific Health

HAWAI'I PACIFIC HEALTH

HAWAI'I HEALTH PARTNERS

Disclaimer:

- The following is intended as information resource only for HHP/HPH providers, clinicians, administrative and clinical leaders.
- Specific areas may not pertain directly to your clinical practice area and/or may not be applicable to your practice based on your existing workflows, infrastructure, software (e.g. EHR), and communications processes.

3

Webinar Information

- You have been automatically muted. You cannot unmute yourself.
- You will be able to submit questions via the Q&A section.
 - Due to time constraints, any unanswered questions will be addressed this week and posted on the HHP website
- A recording of the meeting will be available tomorrow on the HHP website and intranet.

How to Claim CME Credit

1. Step 1: Confirm your attendance

 You should have completed a brief questionnaire before joining today's live webinar.

2. Step 2: HPH CME team will email you instructions

- Complete and submit evaluation survey that will be emailed to you within one week of the offering.
- Your CE certificate will be immediately available to you upon completion of your evaluation.
- Questions? Email
 <u>hphcontinuingeduc@hawaiipacifichealth.org</u>

CME Accreditation Statement

- In support of improving patient care, Hawai'i Pacific Health is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.
- Hawai'i Pacific Health designates this webinar activity for a maximum of 1.0 AMA PRA Category 1 Credit (s) ™ for physicians. This activity is assigned 1.0 contact hour for attendance at the entire CE session.

JOINTLY ACCREDITED PROVIDER™

INTERPROFESSIONAL CONTINUING EDUCATION

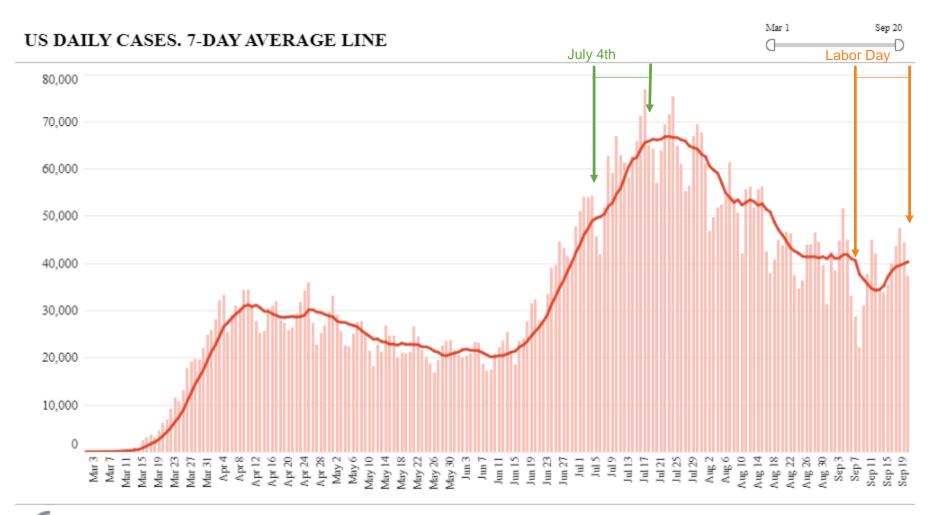
Disclosures

 The planners and presenters of this activity report no relationships with companies whose products or services (may) pertain to the subject matter of this meeting

COVID-19 Updates

Melinda Ashton, MD Executive Vice President and Chief Quality Officer Hawai'i Pacific Health

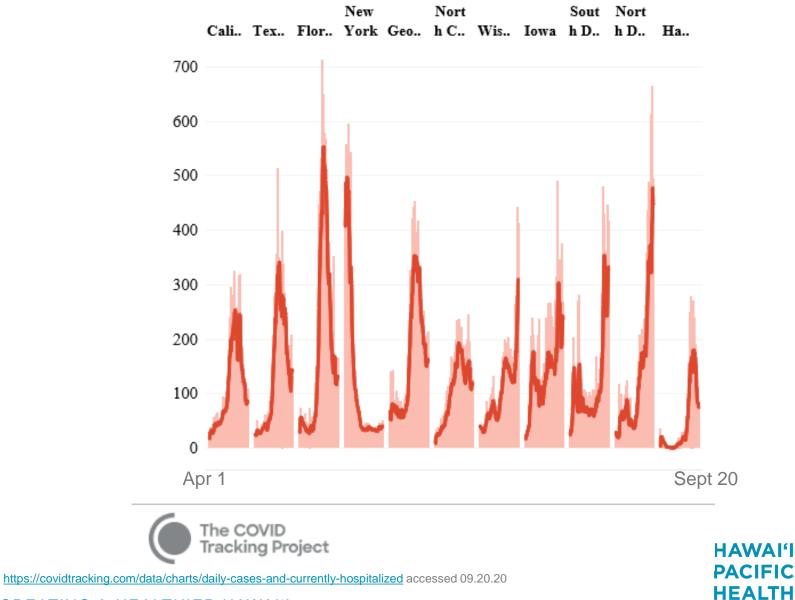
Douglas Kwock, MD Vice President of Medical Staff Affairs



Gerard Livaudais, MD, MPH Executive Vice President, Population Health and Provider Networks Hawai'i Pacific Health

Shilpa Patel, MD Pediatric Hospitalist, Kapi'olani Medical Center Physician Liaison, Quality & Patient Safety Hawai'i Pacific Health

HAWAI'I HEALTH PARTNERS


The COVID Tracking Project

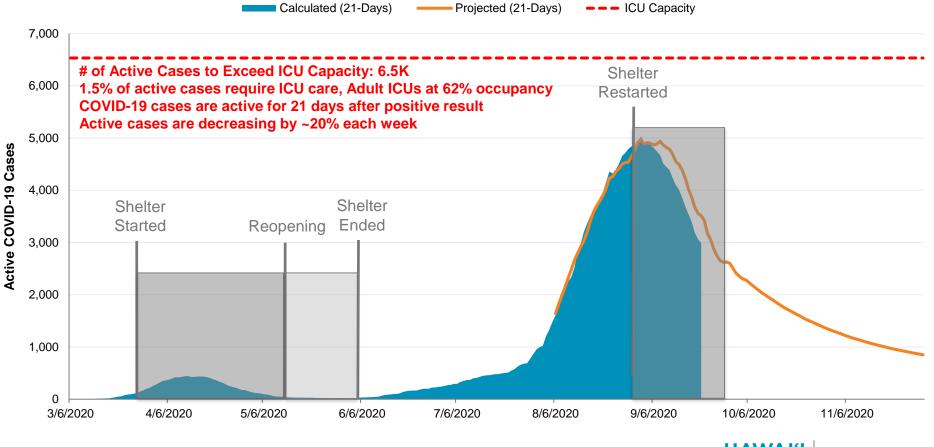
https://covidtracking.com/data/charts/daily-cases-and-currently-hospitalized accessed 09.20.20

CREATING A HEALTHIER HAWAI'I

9

Daily cases per million with 7 day average

CREATING A HEALTHIER HAWAI'I


HAWAI'I

HEALTH

PARTNERS

Projected Active COVID-19 Cases

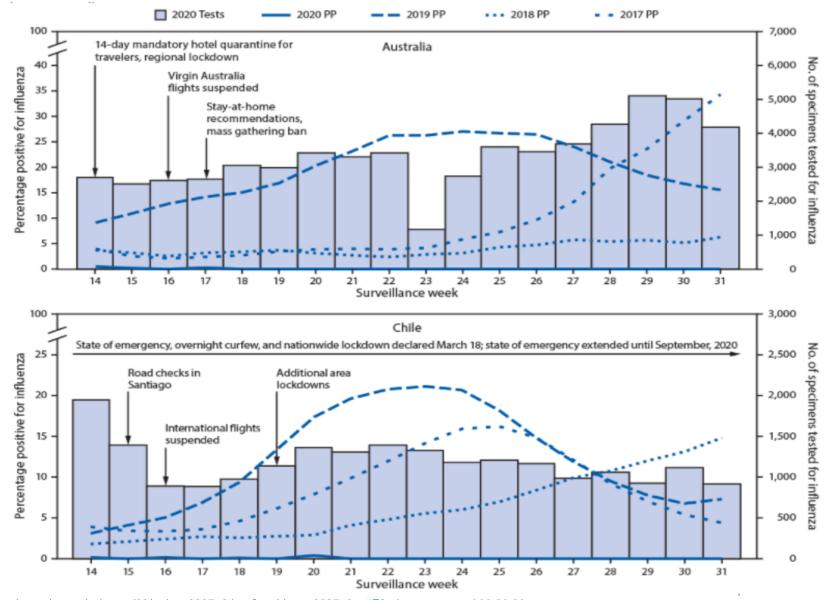
Hawaii Actual v. Projected Active COVID-19 Cases Updated 9/21/2020

As of Total 09/21/20 Census		ICU beds occupied	# Ventilators in use	# New Admissions w/ COVID-19 screening	# New Admissions w/ positive COVID-19	 # Patients currently hospitalized w/ suspect or confirmed COVID-19 	 # Patients currently on a ventilator w/ suspect or confirmed COVID-19 	 # Patients currently in ICU w/ suspect or confirmed COVID-19
KMCWC	158	AICU: 0 NICU: 71 PICU: 6	AICU: 0 NICU: 18 PICU: 3 Wilcox: 0	0	0	S: 1 C: 1 (Peds)	S: 0 C: 0	S: 0 C: 1 (Peds)
РММС	98	11	9	0	0	S: 0 C: 15	S: 0 C: 8	S: 0 C: 9
SMC	116	17	13	3	1	S: 0 C: 29	S: 0 C: 9	S: 0 C: 10
WMC	50	5	0	1	0	S: 1 C: 0	S: 0 C: 0	S: 0 C: 0

S = Suspected; C= Confirmed

CREATING A HEALTHIER HAWAI'I

HAWAI'I | HAWAI'I


HEALTH

PARTNERS

PACIFIC

HEALTH

Number of specimens tested and percentage testing positive for influenza - by year, April–August (weeks 14–31), 2017–20

https://www.cdc.gov/mmwr/volumes/69/wr/mm6937a6.htm?s_cid=mm6937a6_x#F2_down accessed 09.20.20

COVID-19 -

Advanced Search 8

Coronavirus Disease 2019 (COVID-19)

Search

YOUR HEALTH

How COVID-19 Spreads

Updated Sept. 21, 2020

Languages *

Print

A draft version of proposed changes to these recommendations was posted in error to the agency's official website. CDC is currently updating its recommendations regarding airborne transmission of SARS-CoV-2 (the virus that causes COVID-19). Once this process has been completed, the update language will be posted.

COVID-19 is thought to spread mainly through close contact from person-to-person. Some people without symptoms may be able to spread the virus. We are still learning about how the virus spreads and the severity of illness it causes.

Person-to-person spread

The virus is thought to spread mainly from person-to-person.

- Between people who are in close contact with one another (within about 6 feet).
- Through respiratory droplets produced when an infected person coughs, sneezes, or talks.
- These droplets can land in the mouths or noses of people who are nearby or possibly be inhaled into the lungs.
- COVID-19 may be spread by people who are not showing symptoms.

School Reopening

- · Wear masks
- · Wash hands frequently
- Maximize physical distancing to protect individuals
- · Maximize group distancing to slow transmission chains
- + Disinfect objects between users

- · Increase outdoor air ventilation
- Filter indoor air
- Supplement with portable air cleaners
- Verify ventilation and filtration performance

ILDINGS

- Consider advanced air quality techniques
- Use plexiglass as physical barrier
 Install no-contact infrastructure
- Keep surfaces clean
- Focus on bathroom hygiene

ACTIVITI

- · Provide recess
- * Modily physical education
- · Reimagine music and theater classes
- · Continue sports with enhanced controls
- Add structure to free time
- Manage transition times and locations

HEDULES

- * Make lunchtime safer
- Rethink transportation
- Modify attendance

POLICIES

- Establish and reinforce a culture of
- health, safety, and shared responsibility Form a COVID-19 response team and plan
- Prioritize staying home when sick
- Promote viral testing and antibody testing
- Establish plans for when there is a case
- Support remote learning options
- De-densify school buildings
- · Protect high-risk students and staff

Risk mitigation

- Schools and classrooms
 - Masks, Distance and Ventilation (vs. Hygiene Theater)
 - Testing, Isolation, Contact Tracing and Quarantine

After school activities

- Non-organized, social interactions
- Organized activities and sports

Jones E, Young A, Clevenger K, Salimifard P, Wu E, Lahaie Luna M, Lahvis M, Lang J, Bliss M, Azimi P,

Cedeno-Laurent J, Wilson C, Allen J. Healthy Schools: Risk Reduction Strategies for Reopening Schools.

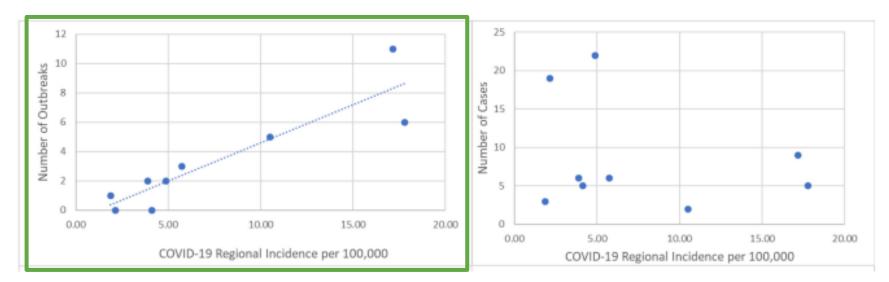
Harvard T.H. Chan School of Public Health Healthy Buildings program. June, 2020.

Hawai'i School Reopening based on Local Prevalence

	Period: September 1 to September 14 (14 days)						
Island	Cases	Population	Cases per 10k	School Guidance			
Oahu	1937	974,563	19.9	Elementary Blended / Secondary Blended			
Molokai	9	7,345	12.3	Elementary In Person / Secondary Blended			
Hawaii	216	201,513	10.7	Elementary In Person / Secondary Blended			
Maui	29	144,444	2.0	In-Person (all students)			
Lanai	0	3,135	0.0	In-Person (all students)			
Kauai	1	72,293	0.1	In-Person (all students)			

Metric Key						
Range	Elementary	Secondary				
0-5.0	In Person	In Person				
5.1-15.0	In Person	Blended				
15.1-25.0	Blended	Blended				
25.1-35.0	Blended	Learn-from-Home				
35.1+	Learn-from-Home	Learn-from-Home				

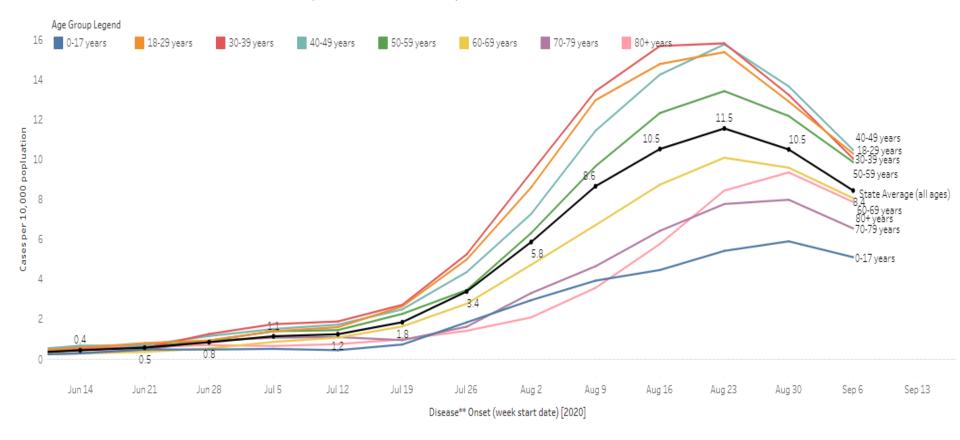
https://health.hawaii.gov/coronavirusdisease2019/what-you-should-know/current-situation-in-hawaii/ accessed 09.20.20



SARS-CoV-2 infection and transmission in educational settings: cross-sectional analysis of clusters and outbreaks in England. Sharif A Ismail MBBS, Vanessa Saliba MD, Jamie Lopez Bernal PhD , Mary E Ramsay PhD, Shamez N Ladhani PhD https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/91 1267/School_Outbreaks_Analysis.pdf

SARS-CoV-2 infection and transmission in educational settings:

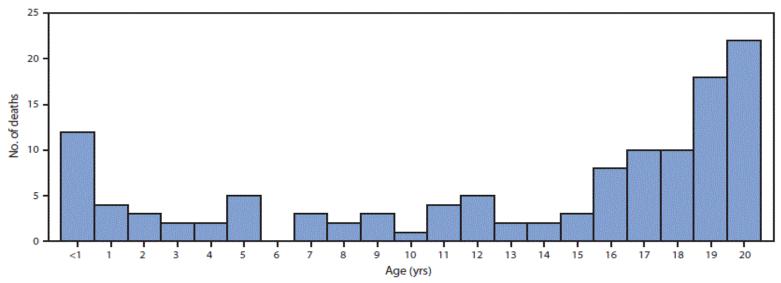
cross-sectional analysis of clusters and outbreaks in England


	Numbers attending			Student Numbers			Rate per 100,000 students per day			
Settings	Minimum	Maximum	average/d	Single	Coprimary	Outbreak	Single	Coprimary	outbreak	total
Early years	108,000	320,000	222,286	5	3	14	2.2 (0.73-5.3)	1.3 (0.28-3.9)	6.3 (3.4-10.6)	9.9 (6.2-15.0)
Primary	195,000	830,000	519,727	21	7	15	4.0 (2.5-6.2)	1.3 (0.54-2.8)	2.9 (1.6-4.8)	8.3 (6.0-11.1)
Secondary	78,000	126,000	101,417	2	0	0	2.0 (0.24-7.1)	0	0	2.0 (0.24-7.1)
	N	umbers atten	ding	Staff numbers			Rate per 100,000 staff per day			
Staff *			519,590	31	0	76	6.0 (4.1-8.5)	0	14.6 (11.5-18.3)	20.6 (16.9-24.9)

https://experience.arcgis.com/experience/eb56a98b71324152a918e72d3ccdfc20/page/page_4/ accessed 09.20.20

New COVID-19 Cases* per Week by Age Group (per 10,000 population), Hawaii 2020

* Uses a 3-week moving average ** If symptom onset date is not available, date of test is used


https://experience.arcgis.com/experience/eb56a98b71324152a918e72d3ccdfc20/page/page_9/ accessed 09.20.20

Morbidity and Mortality Weekly Report (MMWR)

Age at death among persons aged <21 years with SARS-CoV-2– associated deaths — United States, February 12–July 31, 2020

Of the 121 reported COVID deaths from 51 CDC jurisdictions

- 82% were Hispanic, black, native American or pacific islander
- 25% had no underlying health problems
- 13% died at home, 20% died in the ED
- 12% died from Multi-System Inflammatory Syndrome in Children (MIS-C)

Bixler D, Miller AD, Mattison CP, et al. SARS-CoV-2–Associated Deaths Among Persons Aged <21 Years — United States, February 12– July 31, 2020. MMWR Morb Mortal Wkly Rep 2020;69:1324–1329. DOI: <u>http://dx.doi.org/10.15585/mmwr.mm6937e4external.icon</u>.

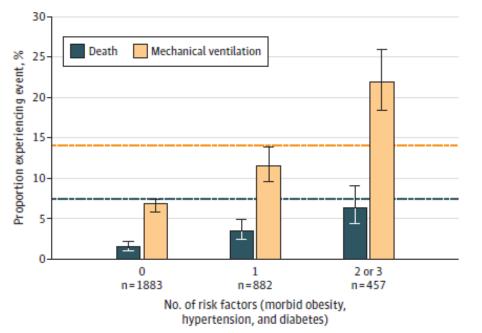
HAWAI'I

HEALTH

PARTNERS

HAWAIʻI

PACIFIC


HEALTH

JAMA Network⁻

Clinical Outcomes in Young US Adults Hospitalized with COVID-19 (Sept 9, 2020)

JAMA Internal Medicine

Figure. Death and Mechanical Ventilation in Young Adults With and Without Morbid Obesity, Hypertension, and Diabetes

Clinical Outcomes in Young US Adults Hospitalized With COVID-19. Jonathan W. Cunningham, MD¹; Muthiah Vaduganathan, MD, MPH¹; Brian L. Claggett, PhD¹; et alKarola S. Jering, MD¹; Ankeet S. Bhatt, MD, MBA¹; Ning Rosenthal, MD, MPH, PhD²; Scott D. Solomon, MD¹ JAMA Intern Med. Published online September 9, 2020. doi:10.1001/jamainternmed.2020.5313

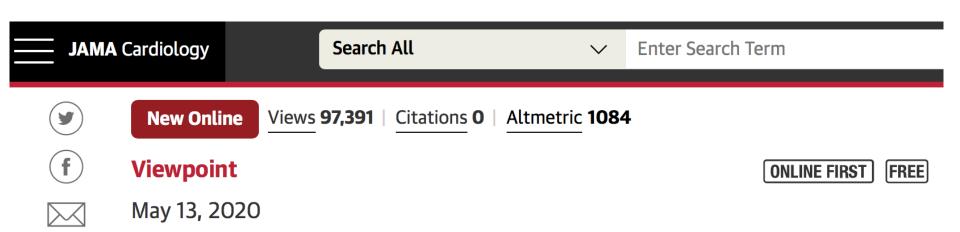
Study of 3222 young adults (18-34 years) required hospitalization for COVID-19 in the US between April 1 and June 30, 2020 (excluded 1600 pregnant women).

- 21% required intensive care, 10% required mechanical ventilation, and 2.7% died.
- In-hospital mortality rate is approximately double that of young adults with acute myocardial infarction.
- Morbid obesity, hypertension, and diabetes were common and associated with greater risks of adverse events.
- Young adults with more than 1 of these conditions faced risks comparable with those observed in middle-aged adults without them.
- More than half of these patients requiring hospitalization were Black or Hispanic

COVID-19 – Young Adults, Athletes, and Myocarditis

Andras Bratincsak, MD

Pediatric and Adult Congenital Cardiology, Hawai'i Pacific Health Medical Group Associate Professor of Pediatrics, University of Hawai'i, John A. Burns School of Medicine


HAWAI'I PACIFIC HEALTH

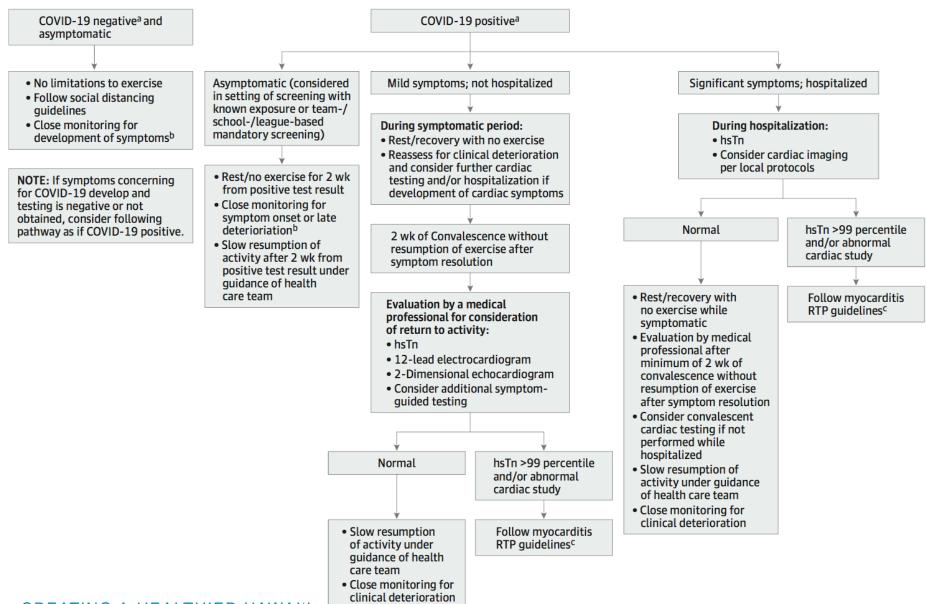
CREATING A HEALTHIER HAWAI'I

HAWAI'I

HEALTH

PARTNERS

More √ A Game Plan for the Resumption of Sport and Exercise After Coronavirus Disease 2019 (COVID-19) Infection


Dermot Phelan, MD, PhD¹; Jonathan H. Kim, MD, MSc²; Eugene H. Chung, MD, MSc³

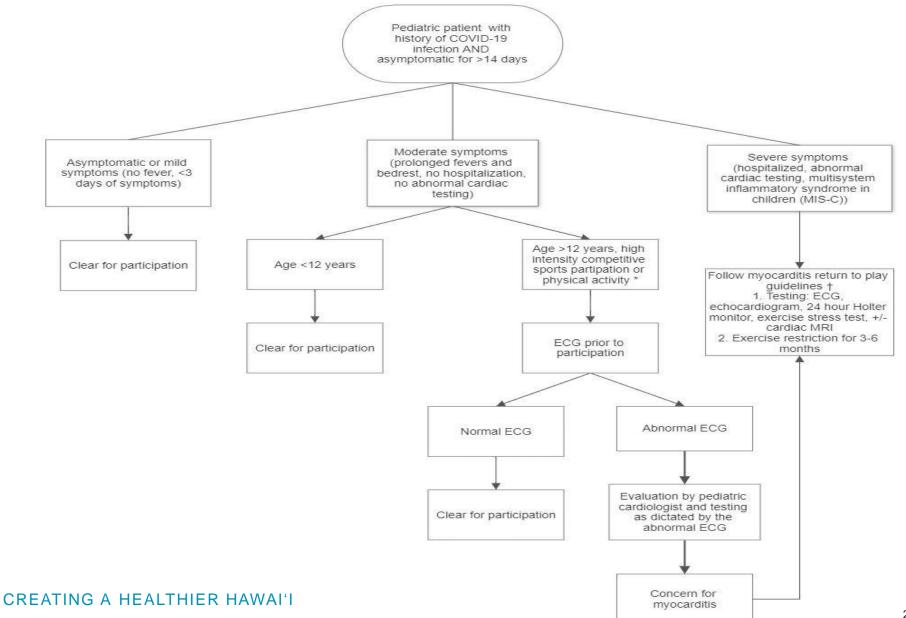
 \gg Author Affiliations ~~|~~ Article Information

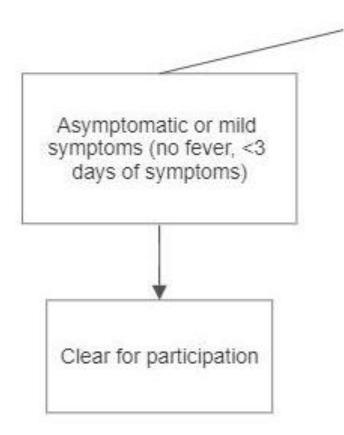
JAMA Cardiol. Published online May 13, 2020. doi:10.1001/jamacardio.2020.2136

Figure. COVID-19 Return-to-Play Algorithm for Competitive Athlete and Highly Active People

AMERICAN COLLEGE of CARDIOLOGY

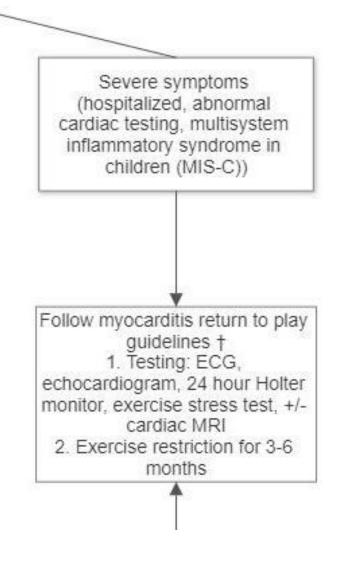
All Ty




Returning To Play After Coronavirus Infection: Pediatric Cardiologists' Perspective

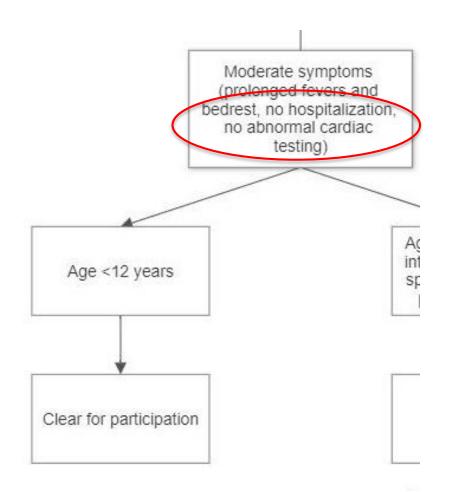
Jul 14, 2020 | Peter N Dean, MD; Lanier Burns Jackson, MD; Stephen M. Paridon, MD, FACC Expert Analysis

Return to Play After COVID-19 Infection in Pediatric Patients



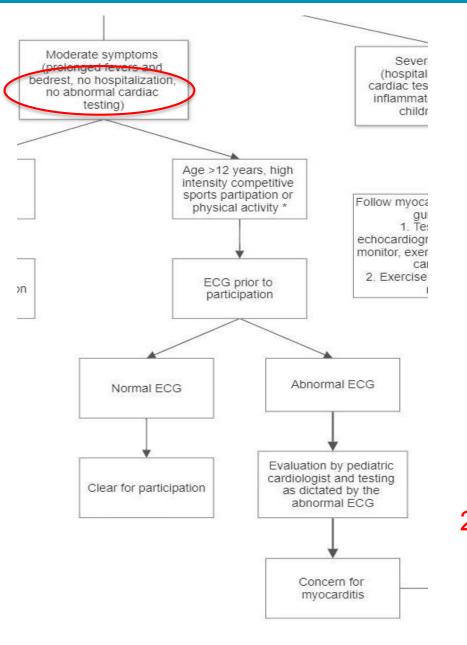
No symptoms 2 weeks after + SARS-CoV-2 PCR

Return to sports without further ado



Severe symptoms likely diagnosis of MIS-C

Strict staged return overseen by cardiology



Moderate symptoms but ECG, echo, Tn normal Ok to go back after 2 weeks if no symptoms

(for younger than 12 years)

Suggested modification: 1) recreational sports, not age

> HAWAI'I HAWAI'I PACIFIC HEALTH HEALTH PARTNERS



Moderate symptoms but ECG, echo, Tn normal

Ok to go back after 2 weeks if no symptoms and if ECG normal (for 12 years and older)

Suggested modification: 1) competitive sports, not age 2) ECG has very poor predictive value Consider echo, or cardiology consult

. .

Hawai'i Pacific Health Research Institute (HPHRI): COVID-19 Therapies in Development

Wade Kyono, MD

Medical Director, Hawai'i Pacific Health Research Institute Principal Investigator, Children's Oncology Group, Kapi'olani Medical Center for Women and Children Pediatric Hematology/Oncology, Hawai'i Pacific Health Assistant Professor of Pediatrics, University of Hawai'i, John A. Burns School of Medicine

HPH Research Institute COVID-19 Activities

- Identify and prioritize COVID-19 Research Initiatives
 - Current (Past) Therapeutics
 - Hydroxychloroquine
 - Convalescent plasma (Expanded Access Program -> Emergency Use Authorization)
 - Remdesivir (Emergency Use Authorization)
 - Search for New Therapeutics
 - Monoclonal antibodies (Regeneron, Eli Lily)
 - Novel treatment Brilacidin (Innovation Pharmaceutical)
 - Ongoing search for agents
 - Prevention/Vaccines
 - Moderna, AstraZeneca, Pfizer all approached for involvement in Phase III vaccine trials

33

Hydroxychloroquine

Hydroxychloroquine – A Cautionary Tale

● ● ● < > □ 0 = nytimes.com C 0 1 0 +

F.D.A. Revokes Emergency Approval of Malaria Drugs Promoted by Trump

The agency said that a review of some studies showed that the drugs' potential benefits in treating Covid-19 did not outweigh the risks.

The Food and Drug Administration said that hydroxychloroquine was "unlikely to be effective" in treating the coronavirus. George Frey/Agence France-Presse — Getty Images

By Katie Thomas

June 15, 2020

Hydroxychloroquine – A Cautionary Tale

Hydroxychloroquine or chloroquine, a treatment for malaria, lupus erythematosus, and rheumatoid arthritis, has been under study as a possible treatment for COVID-19. Current data shows that this drug does not reduce deaths among hospitalised COVID-19 patients, nor help people with moderate disease.*

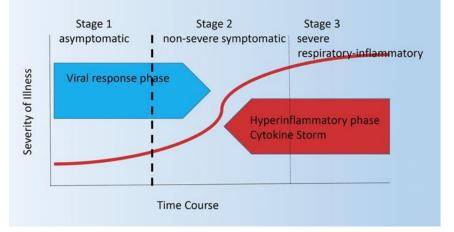
The use of hydroxychloroquine and chloroquine is accepted as generally safe for patients with malaria and autoimmune diseases, but its use where not indicated and without medical supervision can cause serious side effects and should be avoided.

#Coronavirus

#COVID19

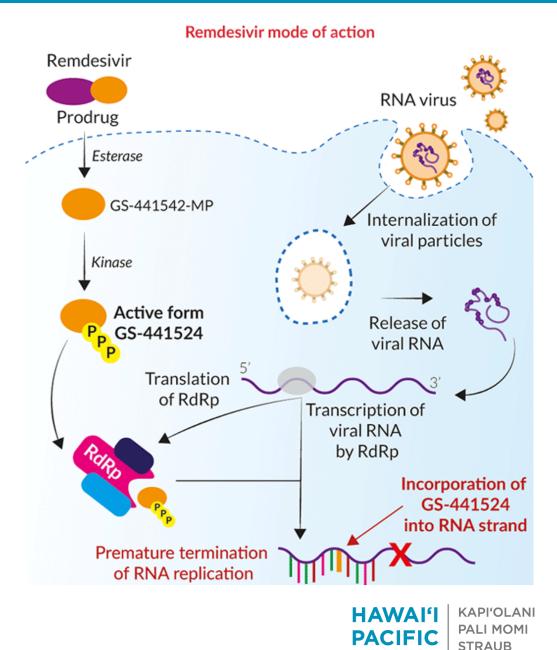
*More decisive research is needed to assess its value in patients with mild disease or as pre- or post-exposure prophylaxis in patients exposed to COVID-19.

FACT: Studies show hydroxychloroquine does not have clinical benefits in treating COVID-19.



What We Are Doing . . .

- Severe COVID-19
 - Dexamethasone
 - Remdesivir
 - COVID-19
 Convalescent Plasma (CCP)


Course of COVID-19 Infection

Remdesivir

- Phase 3 SIMPLE -Severe Study
 - 65% more likely to have improvement at day 11 (5 day dosing)
 - 74% vs 59%
 recovered by Day 14
 - Mortality 7.6% vs
 12.5% at Day 14
- EUA August 28th

WILCOX

HEALTH

COVID-19 Convalescent Plasma

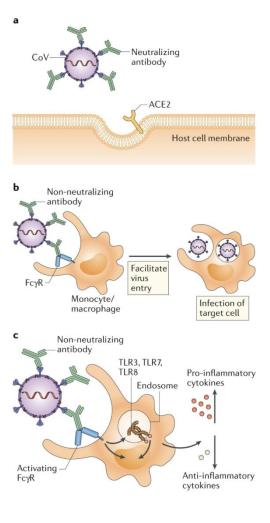
Hawaii CCP Coalition

- BBOH, Hawaii Hospitals, DOH, JABSOM, etc...
- Donors 28 days after infection
- Mayo Clinic Expanded Access Program
 - HPHRI and HPH Investigator
 involvement
- 80% of units with high titer antibody levels
- 636 units distributed Statewide by BBOH

Here's the study patient data:

Approached	114		
Enrolled	91		
Declined	23		
By HPH Site:			
PMMC	46		
Straub	68		

Convalescent Plasma


Expanded access program for convalescent plasma discontinues enrollment, as FDA authorizes its emergency use.

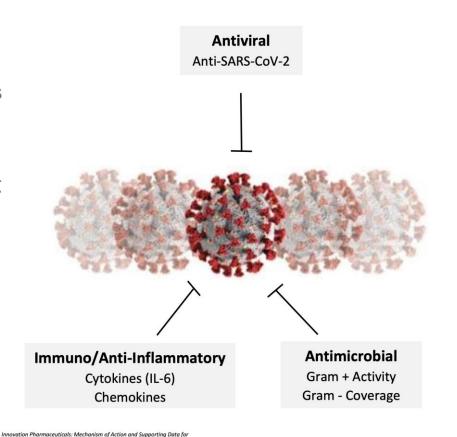
August 23, 2020

Monoclonal Antibodies

- Want neutralizing antibody
 - High titer convalescent plasma
 - Manufactured monoclonal antibodies
 - Eli Lilly
 - Regeneron
- Non-neutralizing antibody may enhance infection or inflammation

KAPI'OLANI PALI MOMI **STRAUB** WILCOX 41

HAWAI


PACIFIC

HEALTH

Novel Agent - "Swiss Army Knife"

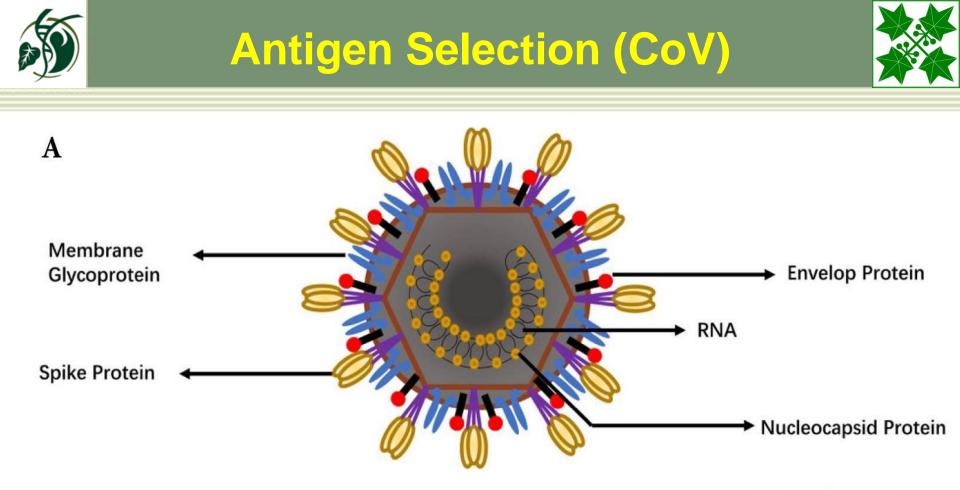
- Brilacidin
 - Defensin
 - Small antimicrobial particle
 widely expressed in animals
 - "First line of defense"
 - Fully synthetic smaller, more stable and more potent than natural defensins
 - Heidi Hillesland (Wilcox ID) with initial Pharma contact
 - Now with FDA IND filing, funding and protocol
 - Will undergo HPHRI/ID Review

Brilacidin as a Potential Novel Coronavirus (COVID-19) Treatment (April 5, 2020)

Page 9 of 42

KAPI'OLANI PALI MOMI STRAUB WILCOX

September 2020: Current Update on Development of COVID-19 Vaccines

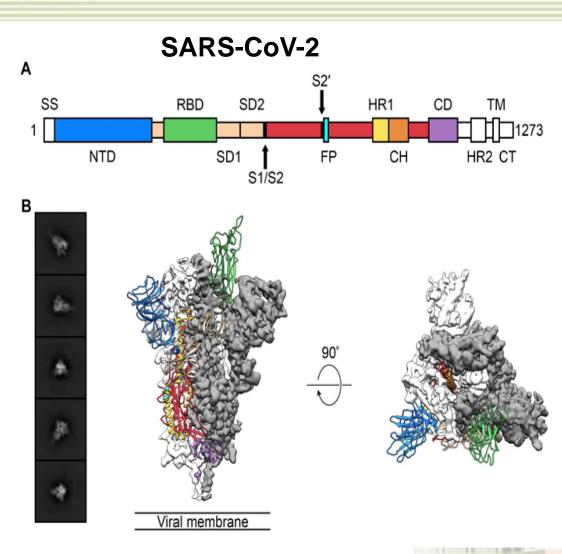

Dr. rer. nat. Axel T. Lehrer, Associate Professor

Department of Tropical Medicine, Medical Microbiology and Pharmacology,

John A. Burns School of Medicine University of Hawai'i at Manoa Honolulu, Hawaii

Spike protein function:

- Receptor binding
- Membrane fusion


Zhou and Zhao, Int J Biol Sci. 2020; 16(10): 1718–1723.

Spike Protein

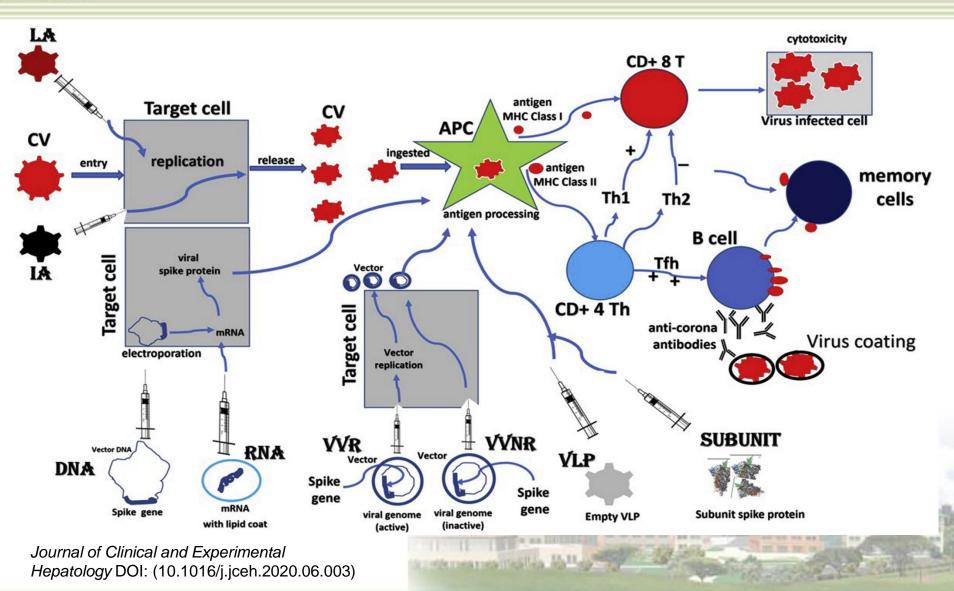
Class I fusion glycoprotein on the surface of the virus responsible for to gain entry into host cells.

The S protein is a trimeric protein that exists in a metastable prefusion

~180 kDa if fully glycosylated, 22 glycosylation sites

The monomer consists of S1 and S2 subunit that are associated non-covalently

S1 subunits forming an interwoven cap that rests atop the spring-loaded S2 stem


Conformation that undergoes a substantial structural rearrangement to fuse the viral membrane with the host cell membrane

Pallesen et al. PNAS 2017

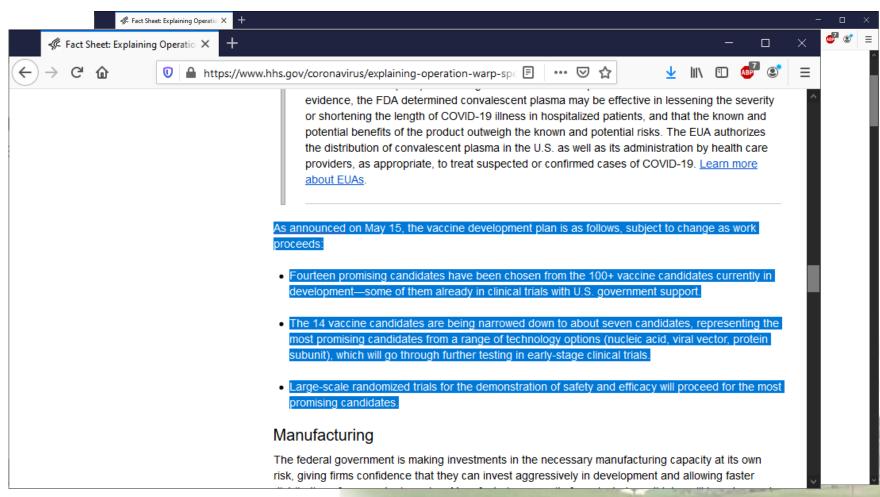
Wrapp and Wang et al. Science 2020

Immunity to SARS-CoV-2

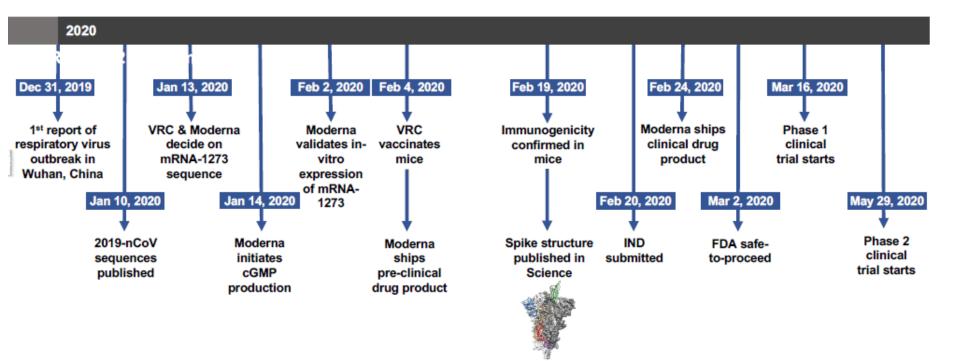
- Total number of (known) Vaccine Candidates under development: 209 (19: unknown platform used)
- **Conventional:** 14 (inactivated), 4 (live-attenuated)
- Virally vectored vaccines: 25 (non-rep), 18 (rep)
- Genetic vaccines: 16 (DNA), 27 (RNA)
- Recombinant subunits: 70 (protein), 16 (VLP)
- **Passive Immunization** convalescent serum and antibody therapies: 51

Source: Milken Institute COVID-19 tracker Accessed 09/11/2020

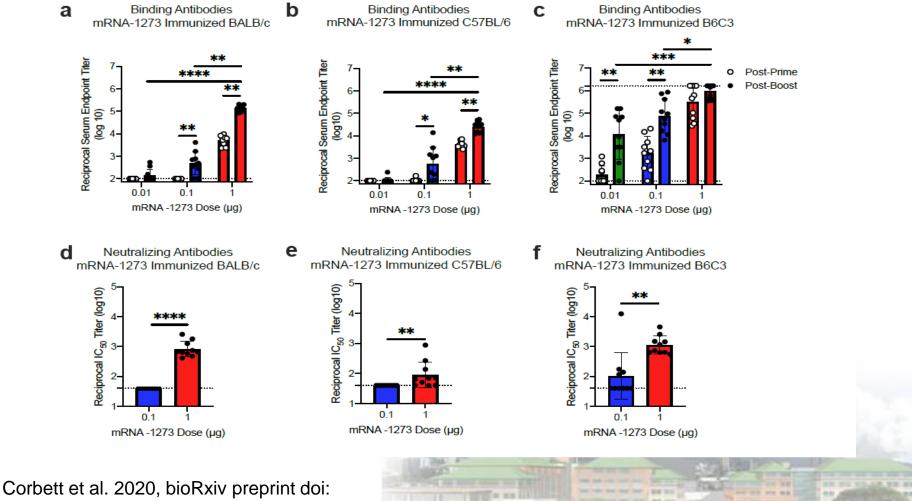
Platform	Pre-clinical	Phase I	Phase II	Phase III
Inactivated	9		2 ?	3
live attenuated	4			
protein subunits	61	5	4 ?	
VLP	14	1	1	
DNA	12		4 ?	
RNA	21	2	2 ?	2
non-replicating viral vector	20	1	3 ?	1
replicating viral vector	18			


Source: Milken Institute COVID-19 tracker Accessed 09/11/2020

August 31st, 2020 Update (hhs.gov)


Technology Platforms funded:

- Nucleic acid: mRNA Moderna, Pfizer/BioNTech
- Viral vector: Adenovirus AstraZeneca (ChAdOx), Johnson & Johnson (Ad26)
- Protein subunit: Novavax (Matrix-M adjuvant), Sanofi/GSK (AS03 adjuvant)
- Expected additional candidate: rVSV (replicating viral vector, Merck)

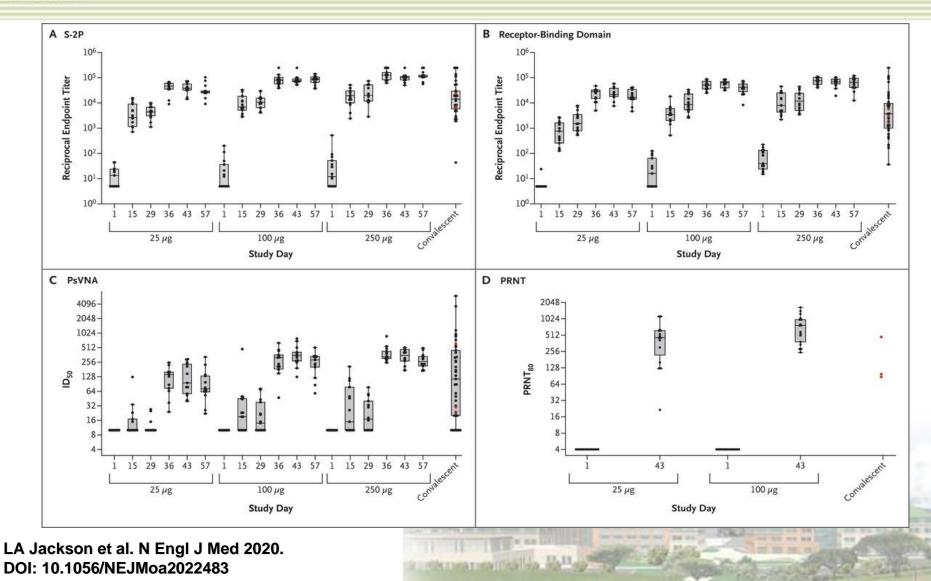

Corbett et al. 2020, bioRxiv preprint doi: https://doi.org/10.1101/2020.06.11.145920.

RNA: Mouse Immunogenicity

https://doi.org/10.1101/2020.06.11.145920.

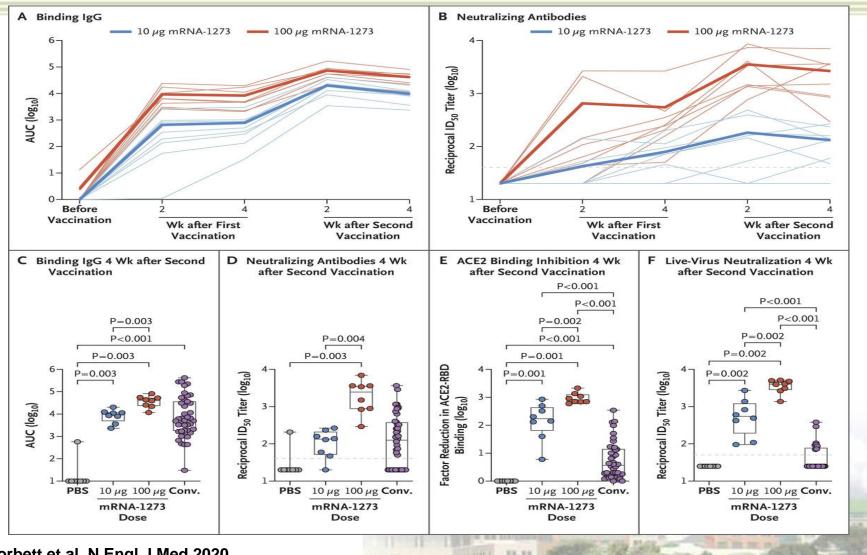
Moderna RNA – Phase I: Systemic and Local AE's

Continued with
 100µg dose level

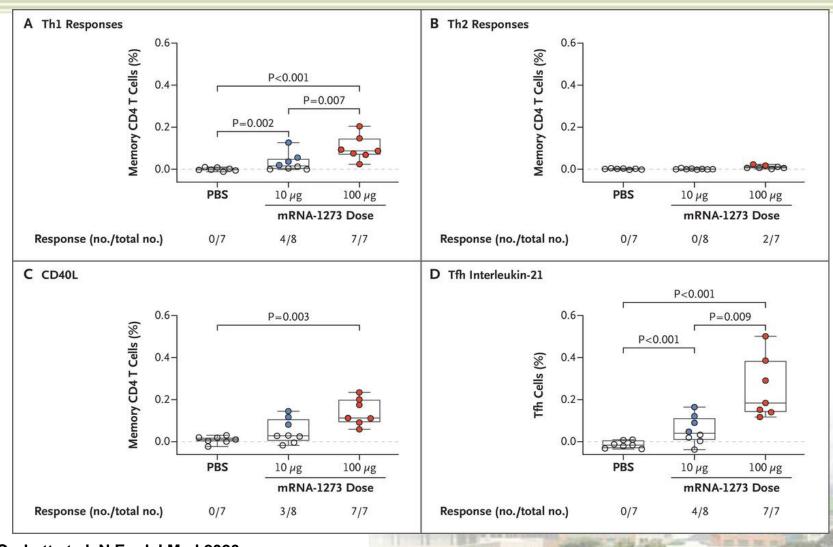

	Dose Group	Vaccination 1		Vaccination 2	
Any systemic symptom	25 μg 100 μg				
	250 µg				
Arthralgia	25 µg —			-	
	100 µg		_	-	
	250 µg				
atigue	25 μg				
	100 μg 250 μg				
ever	25 μg —		_		
	100 µg —		_		
	250 µg —		_		
Chills	25 µg —		_	1	
	100 μg 250 μg				
Headache	250 μg				
readache	100 μg				
	250 µg	_	_		
Myalgia	25 µg				
	100 µg				
	250 µg	_			
Nausea	25 μg 100 μg —		-		
	250 µg				
Any local symptom	25 µg				
	100 µg				
	250 µg				
Size of erythema or redness	25 μg — 100 μg		_		
	250 µg			_	
Size of induration or swelling			-	-	
	100 µg				
	250 µg				
Pain	25 μg 100 μg				
	250 µg				
		20 40 60	80 100 0	20 40 60 80	-
	U	20 40 00	Percentage of Partic		

LA Jackson et al. N Engl J Med 2020. DOI: 10.1056/NEJMoa2022483

mRNA: Antibody and Neutralization Responses

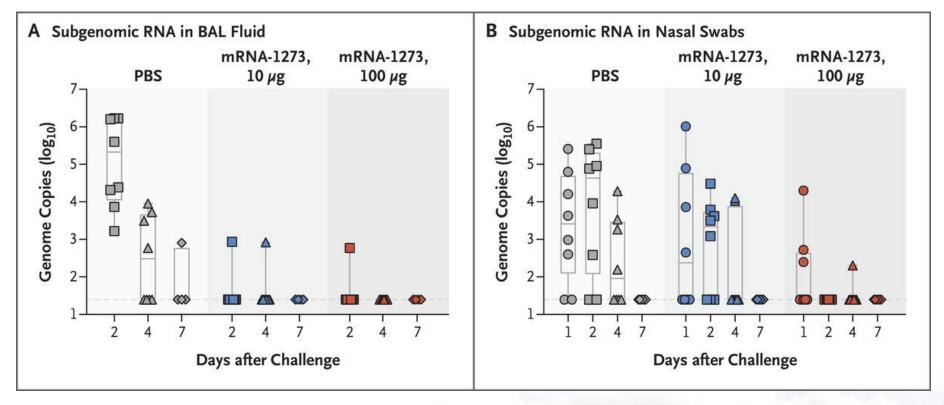


Antibody Responses in Rhesus Macaques (mRNA)



KS Corbett et al. N Engl J Med 2020. DOI: 10.1056/NEJMoa2024671

T-Cell Responses after mRNA-1273 Vaccination



KS Corbett et al. N Engl J Med 2020. DOI: 10.1056/NEJMoa2024671

Efficacy: Upper/Lower Respiratory Viral Load (mRNA)

KS Corbett et al. N Engl J Med 2020. DOI: 10.1056/NEJMoa2024671

- Good immunogenicity after two doses in mice, NHP's and humans
- Balanced responses show that delivery seems efficient for this candidate
- Potent virus neutralization shown
- Reduction in viral loads in Rhesus model lower and upper respiratory tract
- Durability of immunity?
- Adverse reactions and exclusion criteria?
- Efficacy after only one dose and kinetics of immune response?

Adenovirus-vectored Candidates

medicine

LETTERS https://doi.org/10.1038/s41591-020-1070-6

Check for updates

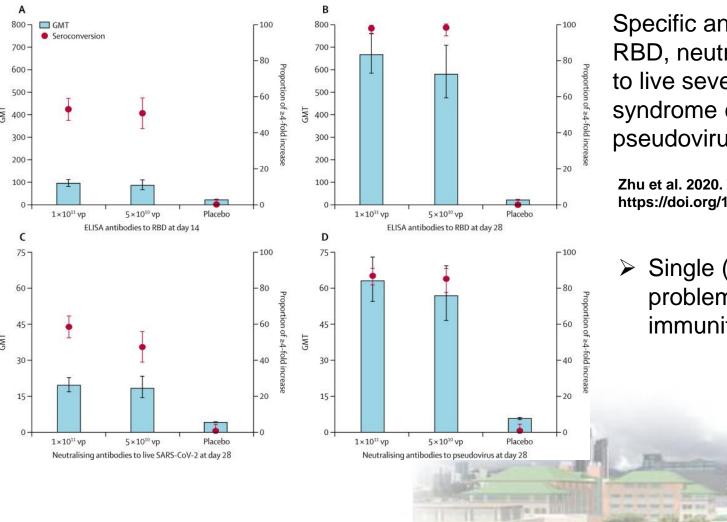
OPEN Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters

Lisa H. Tostanoski ⁽¹⁾¹⁰, Frank Wegmann ⁽²⁾¹⁰, Amanda J. Martinot ^{(1)13,10}, Carolin Loos ^{(1)5,10}, Katherine McMahan^{1,10}, Noe B. Mercado ⁽¹⁾¹⁰, Jingyou Yu^{1,10}, Chi N. Chan ⁽⁶⁾, Stephen Bondoc⁶, Carly E. Starke⁶, Michael Nekorchuk⁶, Kathleen Busman-Sahay ⁽⁶⁾, Cesar Piedra-Mora^{1,3}, Linda M. Wrijil ⁽⁶⁾, Sarah Ducat ⁽⁶⁾, Jerome Custers², Caroline Atyeo^{4,7}, Stephanie Fischinger ⁽⁶⁾, ^{4,7}, John S. Burke ⁽⁶⁾, Jared Feldman^{4,7}, Blake M. Hauser ⁽⁶⁾, ^{4,7}, Timothy M. Caradonna^{4,7}, Esther A. Bondzie¹, Gabriel Dagotto ^{(1),7}, Makda S. Gebre^{1,7}, Catherine Jacob-Dolan ^{(1),7}, Zijin Lin¹, Shant H. Mahrokhian ⁽⁵⁾, Felix Nampanya¹, Ramya Nityanandam¹, Laurent Pessaint⁸, Maciel Porto⁸, Vaneesha Ali⁸, Dalia Benetiene⁸, Komlan Tevi⁸, Hanne Andersen ⁽⁶⁾, Mark G. Lewis⁸, Aaron G. Schmidt^{4,7,9}, Douglas A. Lauffenburger ⁽⁵⁾, Galit Alter ⁽⁶⁾, Jacob D. Estes⁶, Hanneke Schuitemaker², Roland Zahn ⁽⁶⁾ ² and Dan H. Barouch ⁽⁶⁾, ^{1,4,7,9} ⁽⁵⁾

Coronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death¹⁻⁴. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters⁵⁻⁷ and nonhuman primates^{B-10} have

vector-based vaccine¹⁹ encoding a stabilized SARS-CoV-2 spike (S) in this stringent model.

We inoculated 20 Syrian golden hamsters (10–12 weeks old) with 5×10^4 50% tissue culture infective dose (TCID₅₀) (n=4; low-dose) or 5×10^5 TCID₅₀ (n=16; high-dose) SARS-CoV-2 by the intranasal


September 3, 2020 – Demonstrate utility of a COVID-19 pathology model and show that a single dose of Ad26-vectored vaccine reduces viral loads and eliminates pathology. Selects version of the Spike protein that generates better vaccine efficacy.

(Johnson&Johnson/Janssen)

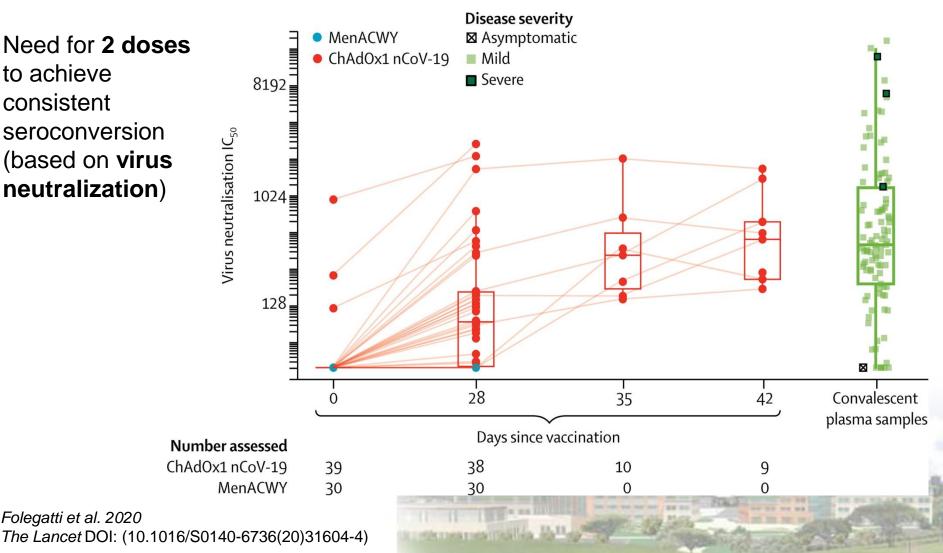
Ad5-vectored Platform (CanSinobiologics)

Specific antibody responses to RBD, neutralising antibodies to live severe acute respiratory syndrome coronavirus 2 and pseudovirus post vaccination

Zhu et al. 2020. The Lancet. https://doi.org/10.1016/S0140-6736(20)31605-6

 Single (high) dose – problem: pre-existing immunity to vector

А Severity First dose 🔲 Mild 🔲 Moderate 📕 Severe 📕 Hospitalisation Induration ltch Pain Redness Swelling Tenderness Warmth 60 Safety Data Percentage 40-20. Commercial Developer: 04 AstraZeneca Second dose 60 Percentage 40 20 04 TTTTTTT В First dose Chills Malaise Fatique **Feverish**† Headache Joint pain Muscle ache Fever* Nausea 60 Percentage 40 20 0 **TTT** чт Second dose 60 Percentage 40-Folegatti et al. 2020. 20-The Lancet DOI: (10.1016/S0140-0 P01234567 P01234567 P01234567 P01234567 P01234567 P01234567 6736(20)31604-4) P01234567 P01234567 P01234567 Days since vaccination vaccination vaccination vaccination vaccination vaccination vaccination vaccination vaccination



ChAdOx Platform – Human Clinical Testing

Need for **2 doses** to achieve consistent seroconversion (based on virus neutralization)

Folegatti et al. 2020

MenACWY ChAdOx1 nCoV-19 ChAdOx1 nCoV-19 (prime) (prime) (prime boost) Potent cell-Spot-forming cells per million PBMCs mediated immunity (already after Ĵ single dose) Days since vaccination Days since vaccination Days since vaccination Number assessed Folegatti et al. 2020 The Lancet DOI: (10.1016/S0140-6736(20)31604-4)

- Potent immunogenicity after single doses of vaccine seen for Ad5 and Ad26vectored candidates given at very high dose levels, ChAdOx seems to require two doses to get consistent seroconversion
- Balanced immune responses shown
- Potent virus neutralization shown
- Animal efficacy data not conclusive mostly just reduction in viral load shown
- Cause of Adverse Reactions that resulted in pauses in clinical trial of ChAdOx?
- Durability of immunity?
- Adverse reactions and exclusion criteria?
- Efficacy of Russia's prime-boost approach with Ad26/Ad5 combination?

Clinical Endpoints – Phase III Trials

Developer	Participants	Definition of efficacy	Threshold of cases to determine efficacy	Platform	Storage Temperature
Moderna mRNA-1273	30,000	Prevention of cases a minimum of 2 weeks after 2 nd dose	151 (60% VE) Interim analysis: 53 cases (73%) and 106 cases	mRNA	-20°C
Pfizer	44,000	Prevention of Cases a minimum of one week after 2 nd dose	164 (60% VE) Interim analysis: 32 cases (77%) and 2 more points	mRNA	-70°C
AstraZeneca AZD1222	30,000	Prevention of cases a minimum of 15 days after 2 nd dose	150 (60% VE) Interim analysis: 75 cases (75%)	chAdOx	2-8°C ?
Johnson & Johnson	60,000?	?	?	Ad26	xx°C

Q&A

CREATING A HEALTHIER HAWAI'I

HAWAI'I PACIFIC HEALTH

HAWAI'I HEALTH PARTNERS

Save the Date! HHP 7th Annual Membership Meeting

- Saturday, November 7, 2020
 - 8:00 a.m. to 12:30 p.m.
- Physician Planning Committee
- Virtual meeting
- Community giveback project
 - Blood Bank of Hawai'i
 - Hawai'i Food Bank
 - Aloha United Way
 - Child & Family Services
- Details & updates forthcoming:
 - HHP website under "For Providers/Events Calendar"
 - HPH eConnect, "Hawai'i Health Partners" channel
 - Emailed via Info@hawaiihealthpartners.org

Thank you!

- A recording of the meeting will be available afterwards.
- Unanswered question?
 - Contact us at Covid19Bulletin@hawaiipacifichealth.org

HAWAI'I PACIFIC HEALTH

HAWAI'I HEALTH PARTNERS

CREATING A HEALTHIER HAWAI'I