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Abstract

Natural language text is typically very unstructured, which makes many different
machine learning applications difficult. A knowledge graph created from relation
extraction techniques can be used to model the relationships of different entities
in a body of text. These graphs create a lot of value for other natural language
applications such as question answering and reading comprehension. One of
the most representative approaches in relation extraction to use the supervised
paradigm in neural networks, which uses selected sets of features in the form
of vectors; for example, Part-of-Speech (POS) tagging feature, and/or syntactic
parsing. To identify the relations between pairs of entities in a diverse text data,
we combine fundamental features and sentence-level information. One can look
up vector forms of all words in the sentence in the form of vectors, then find the
target entities in the sentence by the given training entity pair, in addition to all the
informations of the sentence learned by the neural network. These vectors are then
work as a whole (i.e., concatenation) feed to a softmax classifier to to predict the
according marked relationship label.

1 Introduction

Traditionally, before the recent upsurge in Deep Learning, the state-of-art method for relation
classification are fundamentally based on statistical machine learning. To confront such task directly
from a statistical point of view results in propagation of errors from previously derived existing NLP
systems. There have been publications that demonstrate the capability of these statistical methods;
i.e., POS(Part-of-Speech) Tagging, named entity tags, to extract entities relations and reached an
precision of 67.6% (Mintz et al., 2009). In recent years, Deep Learning has seen boom in popularity
for NLP problems with its ability to model complicated features, resolve ambiguous text, as well as
ensure multiple lexical and sentence level features extraction.

Based on revising recent papers; in this experiment, we create program which consumes data into
knowledge graph with both available and handcraft datasets. We provide analytical insight into the
model as well as tweak the parameters, analyze the existing models, and further improve on selective
ones.

2 Related Works

2.1 Distant Supervision

Adapt Distance Supervision
(Mintz et al., 2009) has an assumption such that if two entities participate in a relation, any sentence
that contain those two entities might express that relation, while in reality may result in non-trivial
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noises. The proposed distant supervision method generates training data automatically via aligning
documents with known knowledge base. Features that can be extracted successfully includes sequence
of words, POS tags, syntactic (dependency parser) features and performed named entity tagging by
Stanford four-class named entity tagger. This model is reported to be able to extract 10k instances
of 102 relations at a precision of 67.6%. In addition, (Riedel et al., 2010) alleviates noises via
deciding whether two entities are related and also mentioned in a given sentence, and then applying
"constraint-driven semi-supervision" to train.

Sentence Level Features
Word embedding has put many features regarding statistical NLP into consideration such as Part-Of-
Speech Tagging, word segmentation, and dependency parsing. Lexical and sentence level features;
however, can be devised as a cue for making the relation recognition decision. Sentence level features
are presented via a max-pooled neural network. Words in a sentence are represented as word features
and position features.

i). Word features includes vector representation of the word and the vector representation of
the word in the sentence. A sentence of length L can be represented as an array of vectors,
(xs, x1, x2, ..., xe). To enrich the feature of the word itself in a context, we can choose size w = 3,
and add the following vector to the sentence level encoding.

{[xs, x1, x2] , [x1, x2, x3] , [x2, x3, x4] , ... [x23, x24, xe]}

ii). w can only be a very limited amount for a richer word features because it includes all w
words sequentially indexed in a sentence. The introduction of position features walks around the
complicated structure in a sentence by focusing on just the entities. Each token in a sentence has two
vector numbers corresponding to the entities. For example, the word {wisconsin} in the example has
distance vectors d1 and d2 with respect to the relative distance of entity words [aaron hohlbein]e1
and [soccer player]e2 , [d1, d2] = [−8, 3]

iii). Lexical Features in addition to the previous two, can provide more information about the
entities in the whole sentence. In an sample training sentence, " ###BEGIN### aaron hoblbein born
... currently without a club . ###END### ". Entity 1 and Entity 2 are the pair of input entities, both
the ones on the left and right of them are also parsed. A list of hypernyms of nouns in the sentences
from WordNet is also parsed for additional lexical features.

Figure 1: Lexical Feature Positions (in blue)

However, distant supervision has an assumption that if two entities appear in a sentence, then every
sentence containing the same pair of entities will show the same relation. This results from the
aligning source sentence to a knowledge base as supervision for extracting relation, and is a very
strong relation. Thus, we will introduce deep learning methods.

3 Attention-based Neural Networks

Previous states of the art results rely on lexical features, while important information in a sentence
can appear anywhere, and may be ignored by these manual feature selection models.
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(a) The architecture of sentence-level attention-based
CNN. Used in Yankai Lin et al 2016

(b) Classical attention mechanism used in Dzmitry
arXiv:1409.0473

Figure 2: Comparison between two attentions.

3.1 Attention on the Entities

(Bahdanau et al., 2014) Breakthroughs neural machine translation model with attention mechanism,
which evolves great success to more broader NLP tasks. At a high-level view in Figure 2a, the
recurrent networks receives two fixed-size vectors as additional inputs at each output position t,
which are (1) embedding of the previously generated output symbol et−1, and (2) encoding a "view"
of the input matrix Blunsom (2017). To generate the fixed-size vectors at t, Bahdanau et al. proposed
to compute a context vector ci as a weighted sum of annotations hi "containing information about
the whole input sequence with a strong focus on the parts surrounding the i-th word of the input
sequence", i.e.,

ci =

Tx∑
j=1

αijhj ,

where

αij =
exp(eij)∑Tx

k=1 exp(eij)
,

is called attention; reflecting the importance of the annotation hj with respect to the previous hidden
state si−1 in deciding the next state si, and generating yi.

Also, eij = a(si−1, hj) is an alignment model scoring "how well the inputs around position j and
the output at position i match" (Bahdanau et al., 2014).

3.2 Piecewise CNN

CNN models were introduced to relation extraction since 2014, e.g., the basic CNN model (Zeng
et al., 2014), Piecewise CNN (Zeng et al., 2015), CNN with multiple kernels (Nguyen and Grishman,
2015), as well as the use of attention (Lin et al., 2016). Compare the tradeoffs between these model
architectures and compare with non-deep learning baselines.

(Lin et al., 2016) improved the Distant supervised relation extraction method with additional attention
mechanism over its previous work, as in 3. The improved version has CNN for semantic feature
extraction and a sentence-level attention for the purpose of reducing wrong labeling weights.

Convolution
With all the features extraction in vector form as mentioned above, we need to utilize all these local
features to predict a relation between a pair of entities globally. In neural networks, deep learning
merges all the features as we expected. i. Linear Transformation:

Zt =W1 ×X

where X ∈ R(n0×t), is the concatenation of all the feature vectors. n0 = w × n, where n is a
hyper-parameter corresponding to the dimension of feature vector. t is the number of nouns in a
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sentence, including the entity pair. W1 ∈ Rn1×t where n1 refers to the number of input nodes of the
first layer in the network.

Zmax
i = argmax(Z, i)

For i represents the i− th row of the transformed matrix, We select the feature that has the greatest
value in each row for the first layer input. This results in a uniformed length of vector, n1

ii. Non-Linear Layer:
G = [ReLU, tanh, Sigmoid] (W2 ·m)

W2 is just another linear transformation, W2 ∈ Rn2×n1 , where n2 is the number of input nodes of
another layer.
[ReLU, Tanh, Sigmoid] We experiment with many non-linear functions and results in the fact that
hyperbolic tanh works better as an activation function due to the fact that:

d

dx
tanh(x) = 1− tanh2 x

(Lin et al., 2016) improved the Distant supervised relation extraction method with additional attention
mechanism over its previous work, as in Figure 3. The improved version has CNN for semantic
feature extraction and a sentence-level attention for the purpose of reducing wrong labeling weights.

Due to the fact that vector representation from previous step has all different size, max-pooling is
required to obtain a fixed-sized vector for the input sentence. However, such single max pooling
technique reduces the size of the hidden layers too rapidly and coarsely so that it does not fully
retrieve the fine-grained details in relation extraction task. Also, the structural information of two
target entities is not considered in a single max pooling. Due to the fact that entities appear in the
context in different position; which in turn split the whole text into different structural regions, the
introduction of piece-wise max pooling can take care of the previous concerns and missing. Instead
of a single max value from the previous layer, piece-wise max pooling is applied to each segment of
the text and returns the max for each part:

The input into a convolution layer is split by the two target entities into three parts:

{sleft, smiddle, sright}

For the output of such layer, s1 is fed into the piece-wise max pooling function as we have the final
concatenated vector for the next non-linear function:

Oi = maxPool(sileft) +maxPool(simiddle) +maxPool(siright)

3.3 Bidirectional Recurrent Networks

Figure 3: The architecture of
CNN/PCNN used for sentence
encoder

Since CNN is not suitable for persisting sequences information, and
may thus lose long-term semantic features, (Zhang et al., 2015) pro-
posed Bidirectional Long-Short-Term Memory networks for mod-
eling relation classifications, with only embedding word vectors
as input sequences had them achieved the-state-of-the-art result.
They have also experimented with lexical features, dependency
parsers as additional input vectors, and boosted the performance
slightly. In contrast to these complex manual features, (Zhou et al.,
2016) leverages four position indicators of two entities in a sentence,
〈e1〉, 〈e1〉, 〈e2〉, 〈e2〉 as single words, and also embedded as word
vectors.

The model we experimented1 has very similar structure in (Zhou
et al., 2016) as Figure 4, other than adapting GRU cells instead of
LSTM. The architecture of the model is:

1. Embedding input sentences as word vectors;

1https://github.com/thunlp/TensorFlow-NRE
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Figure 4: Bidirectional LSTM model with attention in (Zhou et al., 2016). In experiments, we used
GRU cells instead.

2. Bidirectional GRU cells corresponding to the embedding
layer. The number of GRU units in one layer, and the number of GRU layers are both
hyper-parameterizable;

3. Attention layer that "soft align" GRU outputs to the target,
by multiplying a weight vector.

Input Vector Representation There are many paradigms of word embedding; converting human-
readable vocabularies into numbers that can be processed by machine. Two major approaches from
the past several years are the frequency-based embedding and prediction-based embedding.

There are two embedding steps done for the input vector representation. One is word embedding,
which aims to capture syntactic and semantic meanings of the words. The other one is based on the
assumption that words that close to the target entities are usually informative to determine the relation
between entities. In experiment, we have adopted pre-trained word vectors by GloVe (Pennington
et al., 2014), a frequency-based language model doing dimension reduction of words’ co-occurrence
matrix by first normalizing global word counts, and log-smoothing.

Bidirectional GRU GRU is one of the variations of Recurrent Neural Networks, where in general,
at each time t, each hidden state ht will receive both the input vector at time t, xt and also receives
from the same hidden layer in the previous time step ht − 1. Besides, GRU has "update gates"
combining input and forget gates, and it merges cell and hidden state as in Figure 5. We choose
GRU over LSTM, because GRU is less expensive than LSTM, yet has more parameters to train than
conventional RNN. The GRU cell forms each component in the LSTM/GRU layer in Figure 4.

Figure 5: The Gated Recurrent Unit (GRU) for RNN(Olah, 2015).

With each GRU component unchanged, bidirectional networks extend a unidirectional network by a
second sequence of GRU cells, where the hidden-to-hidden connections take input in the opposite
order. Since both GRU and LSTM have forget gate that may lose long-term sequential inputs, and
a unidirectional layer cannot foresee future inputs, the introduction of bidirection alleviates both
concerns. Thus, with both forward and backward hidden outputs, the output of ith word becomes:

hi = [
−→
hi ⊕

←−
hi ].
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However, (Zhou et al., 2016) and the package we adapt use element-wise sum to combine the forward
−→
hi and backward←−hi pass, which contradicts with bidirection convention of concatenation, so we
modify this when experimenting.

Cost Function In the final output layer, for a sentence S, the model uses softmax to predict the
relation label from the set of all relation classes Y :

p̂(y|S) = softmax(W (S)h∗ + b(S)), ŷ = argmax
y

p̂(y|S).

The paper uses normalized cross entropy of predicted relation and groundtruth label as the cost
function, plus norm-2 regularization:

J(θ) = − 1

m

m∑
i=1

ti log(yi) + λ‖θ‖2,

where t ∈ Rm is the one-hot ground truth label, and y ∈ Rm is the estimated probability distribution
of the softmax layer.

4 Experiments

4.1 Datasets

We used two groups of datasets for experiments:

1. For exploring model performances via regularization and tuning hyper-parameters: NYT10
originally released by Riedel et al. (2010), and pre-trained word vectors from New York
Times Annotated Corpus, which are also suggested in (Lin et al., 2016).

2. For further extracting more general relations, and using as sources for graphical models:
Wikipedia Biography Dataset, and pre-trained GloVe word vectors from Wikipedia 2014
and Gigaword 5.

4.2 Evaluation Metric

We will evaluate each model on precision, recall and area under curve to be consistent with the
literature.

4.3 Variations of training tricks

The experiments under this section are conducted with NYT10 dataset, with pre-trained word vectors
from NYTAC. We used mini-batch gradient descent in training, with fixed 3 epochs.

Bi-BRU concatenation & GRU hyper-parameters In most literatures, backward and forward
output vectors are concatenated, while in the package, we found they’re element-wisely summed
up. We enlarged the bi-directional output vector dimension for attention, and followed to use
concatenation instead. Besides, We have tuned some important hyper-parameters, e.g., Adam
optimizer learning rate, GRU unit size, number of layers, etc., while the best performances are
relatively stable towards distinct hyper-parameters. Figure 6 illustrates how the precision-recall curve
evolves on the testing set from models with increasing training steps, etc. Comparing the three
sub-graphs we can find out, for the models with same training step, different unit size of GRU has
subtle effects on the performance, while 2-layer performs worse than 1-layer models in general. Most
significantly from each sub-graph, number of training steps is the key factor towards the overall
performance. Due to the small training size, it’s more likely to overfit on the training data, rather than
boost the performance via simple tuning.

Regularization and overfitting Previous tunings led us to explore regularization techniques. We
used dropout on both forward and backward GRU cells with different keeping probabilities. Figure 7
shows the precision-recall curve for several different dropout keeping probabilities, with other hyper-
parameters untouched and the same training step, from which we found out dropout regularization
has non-trivial effect on the performance.
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(a) 100-unit GRU (b) 230-unit GRU (c) 230-unit GRU

Figure 6: Testing results for BiGRU with attentions on the NYT dataset, for models with different
training steps. a and b uses 1 layer network, and c uses 2 layers.

(a) Precision-recall curve for different dropout
keeping probabilities with selective training step.

(b) BiGRU+ATT compared with other state-of-art
models in literature, prob = 0.4.

Figure 7: Selective dropout comparison results.

Then to quantitatively observe the relation between regularization and training steps, it’s straight
forward to calculate the area under the precision-recall curve, as in Table 1. By comparing the
best performance (largest area under curve) of each probability, the less regularized (higher dropout
probability, except for without dropout) models are easier to be overfitting/should have smaller
training steps. However, their best performances are relatively close.

Table 1: Area under precision-recall curve for different dropout probabilities of increasing training
steps.

Steps Prob = 0.4 Prob = 0.5 Prob = 0.7 No dropout
6000 0.2748 0.2807 0.2820 0.2799
7000 0.3096 0.3098 0.3121 0.3093
8000 0.3107 0.3084 0.3092 0.3108
9000 0.2974 0.3111 0.3237 0.3167

10000 0.3070 0.2953 0.3065 0.3004
11000 0.3273 0.3271 0.3203 0.3241
12000 0.3210 0.3135 0.3171 0.3167
13000 0.3114 0.3128 0.3046 0.2987
14000 0.3276 0.3198 0.3183 0.3084
15000 0.3313 0.3191 0.3135 0.3172
16000 0.3135 0.2825 0.2892 0.3029
17000 0.3028 0.2938 0.2867 0.3124
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(a) NYT10 dataset (b) Wiki dataset

Figure 8: Training loss w.r.t. training steps. Outputs by TensorBoard.

4.4 Sample outputs

A good model can be general to different datasets. As mentioned in 4.1, we (1) did the previous
experiments on NYT10 dataset, which contains well structured and preprocessed relations (entity
pairs usually have strong/general inference relations), and also adopt Wiki dataset to our model,
whose entities are sparse compared to relations. As expected, 8a shows training loss on NYT10 data
converges quickly w.r.t training steps, while the loss on Wiki (8b) is significantly larger. However,
precision-recall values on Wiki’s test set performs better than NYT. This may also due to the sparsity
of Wiki entities, that as along as the model has learnt information for the testing pair, model can more
easily figure out the correct relation class, because the distribution of entity pairs are also sparse in
the target classification space. Thus, in the preprocessing of Wiki data, we have only kept the top 100
occurred relations, and filtered out rare ones. Table 2 gives a sample output on both datasets.

Table 2: Sample extracted relations on testing set.

entity1 entity2 relation
NYT10 norway kongsberg /location/location/contains
NYT10 faik_konica albania /people/person/nationality

Wiki thomas_towie forward position
Wiki alex_müller_racing_driver german nationality

5 Furtherwork

Both statistical and deep learning models we have discussed are in a supervised manner. In fact,
many relations in the dataset are not given, which forces the model to ignore them. There will be
huge improvement on inferencing these un-labeled relations from trained supervised model.

5.1 Reinforcement learning

Wenhan et al., 2017 have studied the problem of learning to reason in knowledge graphs (KGs)
specifically in large scale. A novel reinforcement learning framework for learning multi-hop rela-
tional paths is introduced: A policy-based agent with continuous states based on knowledge graph
embeddings, which reasons in a KG vector-space by sampling the most promising relation to extend
its path. In contrast to prior work, such approach includes a reward function that takes the accuracy,
diversity, and efficiency into consideration. Experimentally, results from this paper show that the
proposed method outperforms a path-ranking based algorithm and knowledge graph embedding
methods on Freebase and Never-Ending Language Learning datasets.

5.2 Global Constraints on Relations

Most of Deep Learning models only consider the task of predicting a single relationship from two
entities. However, in practice we often like to predict the relationship of the subject with many entities.
In the Deep Learning context, predicting each of these relations independently fails to capture the
global context of a document. For example if an article is about a musician and we know that the
"genre" relationship is present in the text, we would expect other relationships such as "instrument",
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or "debut-date" to have a higher probability of showing in the text. One way in which we would
model these constraints is to use a graphical model; such as Linear CRF, to take the output of the
Deep Learning work to represent distributions over many random variables and model the joint
distribution of relationships.

5.3 Multi-instance Single-label Problem

One of the drawbacks in this model is that the model only consider one sentence. However; in real
life, we can barely express a concrete relationship in one or two sentences. In addition, the model
assumes that the relation pair between two entities always has the same target label. Multi-instance
multi-label convolutional neural network relaxes the expressed-at-least-once assumption given in
(Riedel et al., 2010); which makes strong assumption that "if two entities participate in a relation, at
least one sentence that mentions these two entities will express the relation". Also, to the opposite
of feeding one sentence into the network, MIML deploys cross-sentence max-pooling for better
information sharing. Implementation from (Jiang et al., 2016) has shown consistent better results
compared to PCNN.

6 Conclusion

In this project, we experiment and investigate many current and past algorithms on Relation Extraction.
We conclude that by devising more attention mechanism and bi-GRU with CNN Deep Learning, the
results come out substantially better in both public and our own testing datasets. Distant Supervision
and PCNN emphasize on providing more attention on the target entities. While BGRU adds extra
strength in sentence-level information sharing. Our experiments have shown the results that having
these features in the model will steadily improve precision and recall. We will explore the topics
mentioned in further work to encode more complicated correlations between relation paths.

7 Resources and Modifications

Our modifications are mainly based on thunlp/TensorFlow-NRE:

• The package only supports for TensorFlow r0.11, so we upgraded the codes to support
latest version;

• Modifications for experiments, e.g., bi-direction concatenation, tunings and regularization

• Added preprocessing codes for Wiki dataset, and changed some hard-coded settings in the
package for a new dataset.

We have also used GloVe pre-trained vectors (Pennington et al., 2014). DavidGrangier/wikipedia-
biography-dataset
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